
Marginal and density atomic Wehrl entropies for the Jaynes–Cummings model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 035303

(http://iopscience.iop.org/1751-8121/41/3/035303)

Download details:

IP Address: 171.66.16.149

The article was downloaded on 03/06/2010 at 07:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/3
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 035303 (10pp) doi:10.1088/1751-8113/41/3/035303

Marginal and density atomic Wehrl entropies for the
Jaynes–Cummings model

Faisal A A El-Orany

Department of Mathematics and Computer Science, Faculty of Science, Suez Canal University,
41522 Ismailia, Egypt

E-mail: el-orany@yahoo.com

Received 24 August 2007, in final form 10 November 2007
Published 4 January 2008
Online at stacks.iop.org/JPhysA/41/035303

Abstract
In this paper, we develop the notion of the marginal and density atomic
Wehrl entropies for a two-level atom interacting with the single mode field,
i.e. the Jaynes–Cummings model. For this system we show that there are
relationships between these quantities and both the information entropies and
the von Neumann entropy.

PACS numbers: 42.50.Dv, 42.50.−p

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The entanglement represents one of the most remarkable features of quantum mechanics. For
an entangled system it is impossible to factorize its state in a product of independent states
to describe its parts. In recent years, the entanglement has been recognized as a resource for
quantum-information processing [1–3]. Various types of experiments have been performed
on the entanglement in the quantum systems, e.g. long-distance entanglement [4], ion-photon
entanglement [5], many photons entanglement [6], etc. For a recent review, the reader can
consult [7].

Generally, the entanglement in quantum systems is investigated by means of the entropy
[8]. There are various definitions for the entropy including the von Neumann entropy [8], the
relative entropy [9], the generalized entropy [10], the Renyi entropy [11], the linear entropy
and the Wehrl entropy [12]. The Wehrl entropy has been introduced in terms of the Glauber
coherent states and Husimi Q-function. In the classical limit (i.e. h̄ → 0) the von Neumann
entropy tends to the Wehrl entropy [13]. The Wehrl entropy has been successfully applied
in the description of different properties of the quantum optical fields such as phase-space
uncertainty [14, 15], quantum interference [15], decoherence [16, 17], a measure of noise
[18], etc. Additionally, it has been applied to dynamical systems, e.g. the evolution of the
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radiation field with the Kerr-like medium [19] and with the two-level atom [17], i.e. the Jaynes–
Cummings model (JCM) [20]. For the JCM it has been found that the Wehrl entropy is very
sensitive to the phase-space dynamics of Q-function. Also it illustrates the loss of coherence
with the upper limit for the phase randomization during the evolution of the radiation field
[17]. The concept of the atomic Wehrl entropy has been developed [21] and applied to the JCM
[22]. Quite recently, it has been analytically proved that the linear entropy, the von Neumann
entropy and the atomic Wehrl entropy provide identical information on the entanglement in
the JCM [23]. On the other hand, the concept of the phase density of the Wehrl entropy and/or
the Wehrl density distribution for optical fields has been given in [18]. It has been shown that
the Wehrl density distribution clearly describes: states with random phase, states with a partial
phase, phase locking and phase bifurcation of quantum states of light [18]. Inspired by the
concept of the Wehrl density distribution for the field we introduce—in the present paper—the
marginal and density atomic Wehrl entropies for the JCM. We show that these quantities can be
reduced to the information entropies, which are basically used in the treatment of the entropy
squeezing [24]. Also they can provide information on the von Neumann entropy. These are
interesting results motivated by the importance of the JCM in the quantum optics [20]. As is
well known that the JCM can be implemented by several means, e.g. the one-atom mazer [25]
and the trapped ion [26].

We perform the study in the following order. In section 2, we describe the system under
consideration and derive the main relations and equations including the information entropies.
In section 3, we develop the notion of the marginal atomic Wehrl entropies. In section 4, we
give the explicit forms for the density atomic Wehrl entropies and discuss their connection
with the information entropies.

2. Model formalism and basic relations

In this section, we give the Hamiltonian model, its wavefunction and the definition of the
atomic Q-function. Additionally, we investigate the evolution of the information entropies
and the von Neumann entropy.

Without the loss of generality, we restrict the attention to the simplest form of the JCM,
which is the two-level atom interacting with the single cavity mode. In the rotating wave and
dipole approximations the Hamiltonian governing this system is:

Ĥ = Ĥ 0 + Ĥ i,

Ĥ 0 = ω0â
†â + 1

2ωaσ̂z, Ĥ i = λ(âσ̂+ + â†σ̂−),
(1)

where Ĥ 0 (Ĥ i) is the free (interaction) part, σ̂± and σ̂z are the Pauli spin operators, ω0 and
ωa are the frequencies of the cavity mode and the atomic transition, respectively, â (â†)
is the annihilation (creation) of the cavity mode and λ is the atom–field coupling constant.
In (1) we have set h̄ = 1 for convenience. We assume that ω0 = ωa (i.e. the resonance case),
the field is initially in the coherent state |α〉 with real α and the atom is in the superposition of
the excited and ground atomic states as:

|ϑ〉 = cos ϑ |e〉 + sin ϑ |g〉, (2)

where |e〉 (|g〉) stands for the excited (ground) atomic state and ϑ is a phase. Under
these conditions, the dynamical wavefunction of the system in the interaction picture can be
expressed as:

|�(T )〉 =
∞∑

n=0

[G1(n, T )|e, n〉 + G2(n, T )|g, n + 1〉] , (3)

2
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where

Cn = αn

√
n!

exp

(
−1

2
α2

)
, T = tλ,

G1(n, T ) = Cn cos ϑ cos(T
√

n + 1) − iCn+1 sin ϑ sin(T
√

n + 1),

G2(n, T ) = Cn+1 sin ϑ cos(T
√

n + 1) − iCn cos ϑ sin(T
√

n + 1).

(4)

For reasons will be made clear shortly, we give the expectation values for the atomic set
operators {σ̂x, σ̂y, σ̂z} associated with the state (3) as:

〈σ̂z(T )〉 =
∞∑

n=0

[|G1(n, T )|2 − |G2(n, T )|2],

〈σ̂x(T )〉 = 2 Re
∞∑

n=0

G∗
1(n + 1, T )G2(n, T ),

〈σ̂y(T )〉 = 2 Im
∞∑

n=0

G∗
1(n + 1, T )G2(n, T ),

(5)

where Re and Im stand for the real and imaginary parts of the complex quantity. Additionally,
the von Neumann entropy for the JCM can be evaluated as [23]

γ (T ) = − 1
2 [1 + η(T )] ln

[
1
2 + 1

2η(T )
] − 1

2 [1 − η(T )] ln
[

1
2 − 1

2η(T )
]
,

η(T ) =
√

〈σ̂x(T )〉2 + 〈σ̂y(T )〉2 + 〈σ̂z(T )〉2.
(6)

As is well known that the von Neumann entropy is basically used for quantifying the
entanglement, where γ (T ) = 0 for disentangled and/or pure states and γ (T ) = 0.693
for maximally entangled bipartite, i.e. 0 � γ (T ) � ln 2. We conclude this part by shedding
the light on the information entropies for the two-level system (i.e N = 2) described by the
density matrix ρ̂a . The probability distribution of two possible outcomes of measurements of
the operator σ̂k is:

Pj (σ̂k) = 〈ψkj |ρ̂a|ψkj 〉, j = 1, 2; k = x, y, z, (7)

where |ψkj 〉 are the eigenstates of σ̂k . In this case, the associated information entropies are:

H(σ̂k) = −
2∑

j=1

Pj (σ̂k) ln Pj (σ̂k), (8)

where 0 � H(σ̂k) � ln 2. It is obvious that H(σ̂k) has the same limitations as γ (T ). It is worth
mentioning that the information entropies are frequently used in the literatures, e.g., [24] in
the investigation of the entropy squeezing, in particular, for systems satisfying 〈σ̂z(T )〉 = 0.
For these systems the standard uncertainty relation of the atomic operators fails to provide any
useful information on the atomic system. This difficulty has been overcome using entropic the
uncertainty relation [27, 28], which is related to the information entropies (8). Next, using the
short-hand notations b = 〈σ̂x(T )〉, c = 〈σ̂y(T )〉, h = 〈σ̂z(T )〉 the relations (8) can be easily
evaluated as

H(b) = −1

2
(1 + b) ln

(
1

2
+

b

2

)
− 1

2
(1 − b) ln

(
1

2
− b

2

)
,

H(c) = −1

2
(1 + c) ln

(
1

2
+

c

2

)
− 1

2
(1 − c) ln

(
1

2
− c

2

)
,

H(h) = −1

2
(1 + h) ln

(
1

2
+

h

2

)
− 1

2
(1 − h) ln

(
1

2
− h

2

)
.

(9)
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Figure 1. Evolution of the information entropies and von Nuemann entropy as indicated for α = 5.
Figures (a)–(c) and (d) are given for ϑ = 0 and ϑ = π/4, respectively. In (d) solid, dashed and
dot-dashed curves are given for γ (T ), H(c) and H(b), respectively.

The comparison between expressions (6) and (9) shows that for particular values of the
interaction parameters one of the information entropies can tend to the von Neumann entropy,
e.g. when η(T ) � |〈σj (T )〉|. To see this and to begin the discussion, we plot the von Neumann
entropy and information entropies in figure 1 for given values of the interaction parameters.
It is worthwhile mentioning that for ϑ = 0, π/2 we have b = 0 and hence H(b) = ln 2.
In this case, the atomic inversion exhibits the revival-collapse phenomenon (RCP), which is
remarkable in figure 1(a). One can observe that H(h) provides its maximum value in the
course of the collapse regions. From figures 1(b) and (c), one can realize when the atom is
initially in the excited (or ground) state γ (T ) and H(c) can give quite similar behavior on
the bipartite. The slight difference between figures 1(b) and (c) is that the local maxima in
H(c) are replaced by the local minima in γ (T ). Now, the similarity between the behaviors of
γ (T ) and H(c) can be explained as follows. When α is real and the atom is in the excited (or
ground) state we always have 〈σ̂x(T )〉 = 0. Additionally, in the course of the collapse region
we have 〈σ̂z(T )〉 = 0; however, during the revival time the contribution of 〈σ̂y(T )〉2 to η(T )

is more effective than that of 〈σ̂z(T )〉2. Thus we can generally conclude that γ (T ) � H(h).
Now, we draw the attention to figure 1(d), which is given for ϑ = π/4. In this case we have
atomic trapping, i.e. 〈σ̂z(T )〉 � 0 and hence H(h) � ln 2. From figure 1(d) one can observe
that H(b) and H(c) exhibit oscillatory behaviors and gradually show maximum values and/or
long-living entanglement for large interaction times. From the solid curve in figure 1(d)

4



J. Phys. A: Math. Theor. 41 (2008) 035303 F A A El-Qrany

one can observe that γ (T ) is the lower envelope for H(b) and H(c); however, for the large
interaction times γ (T ) = H(b) = H(c) = ln 2. This indicates that there is a systematic loss
of coherence for longer interaction times [17]. The final remark: the above investigations will
be useful in comparing these quantities with the marginal and density atomic Wehrl entropies
in the following sections.

We close this section by defining the atomic Q-function Qa(θ, φ, T ) as:

Qa(θ, φ, T ) = 1

2π
〈θ, φ |ρ̂a(T )| θ, φ〉 , (10)

where |θ, φ〉 is the atomic coherent state having the form [29]:

|θ, φ〉 = cos (θ/2) |e〉 + sin (θ/2) exp(iφ) |g〉 (11)

with 0 � θ � π, 0 � φ � 2π . For wavefunction (3) the atomic Qa function can be evaluated
as

Qa(θ, φ, T ) = 1

4π
[1 + β(T )],

β(T ) = h cos θ + [b cos φ + c sin φ] sin θ.

(12)

One can easily check that Qa is normalized. The Qa can be interpreted in the following sense.
The two different spin coherent states overlap unless they are directed into two antipodal points
on the Bloch sphere. This is quite different from that of the Q function of the optical field,
which represents the joint probability distribution for the simultaneous (noisy) measurements
of the two field quadratures [30]. From (12) it is obvious that Qa has complete information
on the set (b, c, h). In the following sections we use (12) to define the marginal and density
atomic Wehrl entropies.

3. Marginal atomic Wehrl entropies

In this section, we develop the notion of the marginal atomic Wehrl entropies and show how
they can tend to the information entropies (9). In doing so, we start with the definitions of the
marginal atomic Qa functions as:

Qθ =
∫ 2π

0
Qa(θ, φ, T ) dφ,

Qφ =
∫ π

0
Qa(θ, φ, T ) sin θ dθ.

(13)

From (12) and (13) one can easily obtain

Qθ = 1

2
(1 + h cos θ),

Qφ = 1

2π

[
1 +

π

4
(b cos φ + c sin φ)

]
.

(14)

It is obvious that Qθ (Qφ) includes information on 〈σ̂z(T )〉 (〈σ̂x(T )〉, 〈σ̂y(T )〉). Now we are
in a position to define the marginal atomic Wehrl entropies as:

Wθ(T ) = −
∫ π

0
Qθ ln Qθ sin θ dθ,

Wφ(T ) = −
∫ 2π

0
Qφ ln Qφ dφ.

(15)

As Wθ and Wφ have been evaluated from the θ and φ components of Qa we call them marginal
atomic Wehrl entropies. Nevertheless, they are phase independent. It is obvious that the

5
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quantities Wφ(T ) and Wθ(T ) have the notion of the entropy, where Qφ and Qθ are always
non-negative quantities (cf (14)). In this context, Wφ(T ) and Wθ(T ) can be interpreted as
being information measures associated with the components 〈σ̂z(T )〉 and (〈σ̂x(T )〉, 〈σ̂y(T )〉),
respectively. Substituting (14) into (15) and carrying out the integration we obtain:

Wθ(T ) = ln(2
√

e) +
(1 − h)2

4h
ln(1 − h) − (1 + h)2

4h
ln(1 + h),

= H(h) +
1

2
+

(1 − h2)

4h
ln

[
1 − h

1 + h

]
, (16)

Wφ(T ) = ln(2π) −
∞∑

n=0

(2n)!

4n+1[(n + 1)!]2
ξn+1,

= ln(2π) − ξ3F2

({
1

2
, 1, 1

}
, {2, 2}; ξ

)
= ln(2π) − 1 +

√
1 − ξ − ln

[
1 +

√
1 − ξ

2

]
, (17)

where ξ = π2(b2+c2)

16 and qFp({τ1, τ2, . . . , τq}, {υ1, υ2, . . . , υp}; ξ) is the generalized
hypergeometric function [37]. In the derivation of (17) we have used the series expansion of
the logarithmic function and the following integral identity [37]:∫ 2π

0
(c1 sin x + c2 cos x)k dx =

{
0 for k = 2m + 1,

2π (2m)!
4m(m!)2

(
c2

1 + c2
2

)m
for k = 2m,

(18)

where c1, c2 are the c-numbers and k is a positive integer. The second and the third lines of
(17) include different forms for the summation in the first line.

From the extreme values of h, b, c and from expressions (16) and (17) one can obtain the
following inequalities:

1
2 � Wθ(T ) � ln 2, ln(2π) − 0.17 � Wφ(T ) � ln(2π). (19)

The number 0.17 is the value of the series in the first line of (17), which has been obtained
from its exact form in the third line. We plot (16) and (17) in figures 2 for the given values of
the interaction parameters. Comparing parts (a) and (b) in figure 1 with those in figure 2 leads
to—apart from the different scales in figures 1 and 2—when the atom is in the excited (or
ground) Wθ and Wφ can give information on H(h) and H(c), respectively. Nevertheless, when
〈σ̂z(T )〉 � 0 (i.e. ϑ = π/4) we have H(h) = Wθ = ln 2; however, Wφ gives information on
γ (T ) (compare the solid curve in figure 1(d) with figure 2(c)). It is obvious that Wφ stabilizes
at a certain level after a sufficient long interaction time. In the language of entanglement, when
Wφ(T ) = ln(2π) − 0.17 [or ln(2π)] the bipartite is disentangled [or maximally entangled].
Next, we treat the problem of different scales between the marginal atomic Wehrl entropies and
the information entropies. This can be raised by redefining Wθ and Wφ to have the limitations
of the corresponding information entropies, i.e. 0 � H(.) � ln 2. With this in mind and from
(19) we obtain

Ŵθ (T ) = ln 2

ln
(

4
e

) [2Wθ(T ) − 1],

W(T ) = ln 2

ln(2π) − 0.17
[Wφ(T ) − 0.17].

(20)

We close this section by checking the validity of (20). As an example, we have plotted the
rescaled quantity W in figure 2(d). The comparison between figures 1(d) and 2(d) is instructive
and shows that W(T ) � γ (T ).

6
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Figure 2. Evolution of the marginal atomic Wehrl entropies as indicated in the figures for α = 5
against the scaled time T. Figures (a), (b) and (c), (d) are given for ϑ = 0 and π/4, respectively.

4. Density atomic Wehrl entropies

In this section we derive the explicit expressions for the density atomic Wehrl entropies,
which have been numerically treated, e.g. [22] in the static regime. Moreover, we deduce
the connections between these quantities and the information entropies. The density atomic
Wehrl entropies can be defined as

Zθ(T ) = −
∫ 2π

0
Qa(θ, φ, T ) ln Qa(θ, φ, T ) dφ,

Zφ(T ) = −
∫ π

0
Qa(θ, φ, T ) ln Qa(θ, φ, T ) sin θ dθ.

(21)

It is evident that Zθ,Zφ are phase dependent and they have the notion of the entropy. The
components Zθ and Zφ can be interpreted as being the information measures associated with
the directions θ and φ, respectively. In this respect, they may also be called geometric
information entropies. Substituting (12) into (21) and carrying out the integration we obtain
the following expressions:

7
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Zθ(T ) = (1 + h cos θ)
ln(4π)

2

− 1

2

h cos θ +
∞∑

n=2

[ n
2 ]∑

r=0

(−1)n(n − 2)!

(n − 2r)!(r!)24r
(h cos θ)n−2r sin2r θ(b2 + c2)r

 , (22)

Zφ(T ) = 1

4π

[
2 +

πε

2

]
ln(4π) − ε

8

+
∞∑

n=1

n∑
r=0

n−r∑
s=0

(2n − 1)!(n − r)!(−1)sh2(n−r)ε2r+1

(2r + 1)!(2n − 2r)!(n − r − s)!s!(2s + 2r + 3)4s+r+2β(s + r + 2, s + r + 2)

− 1

2π

∞∑
n=1

n∑
r=0

r∑
s=0

(2n − 2)!r!(−1)sh2(n−r)ε2r

(2r)!(2n − 2r)!(r − s)!s!(2n + 2s − 2r + 1)
, (23)

where β(.) is the Beta function and ε = b cos φ + c sin φ. In the derivation of (22) and (23),
we have used procedures similar to those done for (17) as well as for the following identity
[37]: ∫ π

0
sinm−1 x dx = π

2m−1mβ
(

m+1
2 , m+1

2

) . (24)

From (22) and (23) one can realize that each of Zθ and Zφ can give information on the atomic
components, i.e. h, b, c. This is in contrast to the marginal atomic Wehrl entropies (cf (16)
and (17)). Also their limitations are sensitive to the phase as well as the initial atomic states.
We have numerically checked this fact.

Next, we show how Zθ and Zφ can be connected with the information entropies as well
as γ (T ). For instance, throughout straightforward calculations one can easily show:

Zθ=0(T ) + Zθ=π (T ) = H(h) + ln(2π), (25)

Zθ=π/2(T ) = 1

2
ln(4π) − 1

8

∞∑
n=0

(2n)!ξ̄ n+1

4n[(n + 1)!]2

= 1

2
ln(4π) − 1

2
+

1

2

√
1 − ξ̄ − 1

2
ln

[
1 +

√
1 − ξ̄

2

]
, (26)

where ξ̄ = b2 + c2. The series in the first line of (26) is similar to that in (17). Thus the
comparison between (17) and (26) shows that Zθ=π/2(T ) can carry information on the von
Neumann entropy. To be more specific, from (25) we can obtain the following rescaled density
atomic Werhl entropy:

Ẑθ=π/2(T ) = ln 2

0.15

[
Zθ=π/2(T ) − 1

2
ln(4π) + 0.15

]
, (27)

where the number 0.15 is obtained from (26) using the extreme values of b, c. We have
numerically found that Ẑθ=π/2(T ) � γ (T ). Now, we draw the attention to Zφ . When ε → 0
(i.e. for b = 0 and φ = 0) expression (23) reduces to

Zφ(T ) = 1

2π

{
ln(2π) + H(h) +

1

2
+

(1 − h2)

4h
ln

[
1 − h

1 + h

]}
. (28)

Also when h � 0 (i.e. the atomic trapping case) expression (23) can give information on b or
c based on the value of φ.

8
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Figure 3. Evolution of the density atomic Wehrl entropies as indicated in the figures for
(α, ϑ) = (5, 0) and θ = φ = π/4 against the scaled time T.

We close this section by studying numerically the case for which two or all of the
components (b, c, h) give comparable contribution to the density atomic Wehrl entropies (see
figures 3). In these figures we have taken θ = φ = π/4, ϑ = 0. It is obvious that in the
evolution of Zθ=π/4 (Zφ=π/4) the behavior of 〈σz(T )〉 (〈σy(T )〉) is dominant. It seems that
this is related to the leading terms in the expressions (22) and (23).

In conclusion, in this paper we have developed the notion of the marginal and density
atomic Wehrl entropies for the JCM. We have shown that there are relationships between these
quantities and both of the information entropies and von Neumman entropy. The marginal
(density) atomic Wehrl entropies are phase independent (dependent) and have (do not have)
clear limitations. Furthermore, the marginal (density) atomic Wehrl entropies can be used
as the information measures associated with the atomic components (orientations θ and φ).
Finally, we have derived various analytical relations.
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